(defmacro zero? (x) `(equal ,x nil)) (defmacro z? (x) `(atom ,x)) (defmacro succ (x) `(cons ,x ,x)) (defmacro pred (x) `(cdr ,x)) (defun nat? (x) (if (z? x) (null x) (and (equal (car x) (cdr x)) (nat? (pred x))))) (defthm zero-is-nat (implies (zero? x) (nat? x))) (defun nat= (x y) (cond ((and (z? x) (z? y)) t) ((or (z? x) (z? y)) nil) (t (nat= (pred x) (pred y))))) (defthm nat=-reflexive (nat= x x)) (defthm nat=-symmetric (equal (nat= x y) (nat= y x))) (defthm nat=-transitive (implies (and (nat= x y) (nat= y z)) (nat= x z))) (defthm nat=-to-equal (implies (and (nat? x) (nat? y)) (equal (nat= x y) (equal x y)))) (defun nat+ (x y) (if (z? y) x (succ (nat+ x (pred y))))) (defthm nat+-commutative (implies (and (nat? x) (nat? y)) (equal (nat+ x y) (nat+ y x)))) (defthm nat+-left-zero (implies (and (nat? x) (z? x) (nat? y)) (equal (nat+ x y) y))) (defthm nat+-right-cancellative (equal (equal (nat+ x k) (nat+ y k)) (equal x y))) (defthm nat+-left-cancellative (implies (and (nat? x) (nat? y) (nat? k)) (equal (equal (nat+ k x) (nat+ k y)) (equal x y))) :hints (("Goal" :in-theory (disable nat+-commutative) :use ((:instance nat+-commutative (x x) (y k)) (:instance nat+-commutative (x y) (y k)))))) (defthm associativity-of-nat+ (equal (nat+ x (nat+ y z)) (nat+ (nat+ x y) z))) (defun nat* (x y) (if (z? y) nil (nat+ x (nat* x (pred y))))) (defthm nat*-left-one (equal (nat* x (succ nil)) x)) (defthm nat*-right-one (equal (nat* x (succ nil)) x)) (defthm nat*-commutative (implies (and (nat? x) (nat? y)) (equal (nat* x y) (nat* y x)))) (defthm nat?-nat* (implies (and (nat? x) (nat? y)) (nat? (nat* x y)))) (defthm nat*-left-zero (implies (and (z? x) (nat? x)) (equal (nat* x y) nil))) (defthm distributivity-of-nat* (implies (and (nat? x) (nat? y) (nat? z)) (equal (nat* x (nat+ y z)) (nat+ (nat* x y) (nat* x z))))) (defthm associativity-of-nat* (implies (and (nat? x) (nat? y) (nat? z)) (equal (nat* x (nat* y z)) (nat* (nat* x y) z))) :hints (("Goal" :in-theory (disable nat*-commutative))))