(defun mapcar-cons (e x) (if (endp x) nil (cons (cons e (car x)) (mapcar-cons e (cdr x))))) (defun insert (e x) (if (endp x) (list (list e)) (cons (cons e x) (mapcar-cons (car x) (insert e (cdr x)))))) (defun mappend-insert (x y) (if (endp y) nil (append (insert x (car y)) (mappend-insert x (cdr y))))) (defun permutations (x) (if (endp x) (list nil) (mappend-insert (car x) (permutations (cdr x))))) (defun factorial (n) (if (zp n) 1 (* n (factorial (1- n))))) (defun mapcar-len (x) (if (endp x) nil (cons (len (car x)) (mapcar-len (cdr x))))) (defun sum (x) (if (endp x) 0 (+ (car x) (sum (cdr x))))) (defun mapcar-sum (x y) (if (or (endp x) (endp y)) nil (cons (+ (car x) (car y)) (mapcar-sum (cdr x) (cdr y))))) (defun repeat (x n) (if (zp n) nil (cons x (repeat x (1- n))))) (defun repeatedp (x) (if (or (endp x) (endp (cdr x))) t (and (equal (car x) (cadr x)) (repeatedp (cdr x))))) ;; for len-insert (defthm len-mapcar-cons (equal (len (mapcar-cons e x)) (len x))) ;; for len-mappend-insert (defthm len-append (equal (len (append x y)) (+ (len x) (len y)))) ;; for len-permutations-lemma (defthm len-mappend-insert (equal (len (mappend-insert e x)) (sum (mapcar-sum (mapcar-len x) (repeat 1 (len x)))))) ;; for len-permutations-lemma (defthm sum-mapcar-sum (implies (equal (len x) (len y)) (equal (sum (mapcar-sum x y)) (+ (sum x) (sum y))))) ;; for len-permutations-lemma (defthm len-repeat (implies (natp n) (equal (len (repeat x n)) n))) ;; for len-permutations-lemma (defthm len-mapcar-len (equal (len (mapcar-len x)) (len x))) ;; for len-permutations-lemma (defthm sum-repeat-1 (implies (natp n) (equal (sum (repeat 1 n)) n))) ;; for len-permutations-lemma (defthm sum-repeatedp (implies (and (nat-listp x) (repeatedp x)) (equal (sum x) (if (consp x) (* (car x) (len x)) 0)))) ;; for len-permutations-lemma (defthm nat-listp-mapcar-len (nat-listp (mapcar-len x))) ;; for repeatedp-mapcar-len-mappend-insert (defthm mapcar-len-append (equal (mapcar-len (append x y)) (append (mapcar-len x) (mapcar-len y)))) ;; for repeatedp-mapcar-len-mappend-insert (defthm repeatedp-append (equal (repeatedp (append x y)) (cond ((endp x) (repeatedp y)) ((endp y) (repeatedp x)) (t (and (repeatedp x) (repeatedp y) (equal (car x) (car y))))))) ;; for mapcar-len-insert (defthm mapcar-len-mapcar-cons (equal (mapcar-len (mapcar-cons e x)) (mapcar-sum (mapcar-len x) (repeat 1 (len x))))) ;; mapcar-len-insert (defthm len-insert (equal (len (insert e x)) (+ 1 (len x)))) ;; for repeatedp-mapcar-len-mappend-insert (defthm mapcar-len-insert (equal (mapcar-len (insert e x)) (repeat (+ 1 (len x)) (+ 1 (len x))))) ;; for repeatedp-mapcar-len-mappend-insert (defthm car-append (equal (car (append x y)) (if (endp x) (car y) (car x)))) ;; for repeatedp-mapcar-len-mappend-insert (defthm car-repeat (equal (car (repeat x n)) (if (zp n) nil x))) ;; for repeatedp-mapcar-len-mappend-insert (defthm repeatedp-repeat (repeatedp (repeat x n))) ;; for repeatedp-mapcar-len-mappend-insert (defthm car-mapcar-len-mappend-insert (equal (car (mapcar-len (mappend-insert e x))) (if (consp x) (+ 1 (len (car x))) nil))) ;; for len-permutations-lemma (defthm repeatedp-mapcar-len-mappend-insert (implies (repeatedp (mapcar-len x)) (repeatedp (mapcar-len (mappend-insert e x))))) ;; for len-permutations-lemma (defthm repeatedp-mapcar-len-permutations (repeatedp (mapcar-len (permutations x)))) ;; for len-permutations-lemma (defthm consp-mapcar-len-mappend-insert (consp (mapcar-len (mappend-insert e (permutations x))))) ;; for len-permutations-lemma (defthm len-car-mappend-insert (equal (len (car (mappend-insert e x))) (if (consp x) (+ 1 (len (car x))) 0))) ;; for len-permutations-lemma (defthm len-car-permutations (equal (len (car (permutations x))) (len x))) ;; for len-permutations (defthm len-permutations-lemma (equal (len (mappend-insert e (permutations x))) (+ (len (permutations x)) (* (len x) (len (permutations x)))))) (defthm len-permutations (equal (len (permutations x)) (factorial (len x))))