;;; Copyright 2024 Masaya Tojo ;;; ;;; Licensed under the Apache License, Version 2.0 (the "License"); ;;; you may not use this file except in compliance with the License. ;;; You may obtain a copy of the License at ;;; ;;; http://www.apache.org/licenses/LICENSE-2.0 ;;; ;;; Unless required by applicable law or agreed to in writing, software ;;; distributed under the License is distributed on an "AS IS" BASIS, ;;; WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ;;; See the License for the specific language governing permissions and ;;; limitations under the License. (define-library (qklib infix) (export infix->prefix prefix->infix current-operator-rule-set) (import (scheme base) (scheme case-lambda) (only (srfi 1) car+cdr fold break! reverse! append! append-map! append-reverse!) (only (srfi 26) cut cute) (qklib infix rule-set)) (begin (define (make-default-operator-rule-set) (rule-set (list (operator '+ 1 'both (unit 0)) (operator '- 1 'left (unit 0 #t #t)) (operator '* 2 'both (unit 1)) (operator '/ 2 'left (unit 1 #t) (prefix '/)) (operator '^ 3 'right #f (prefix 'expt #t))))) (define current-operator-rule-set (make-parameter (make-default-operator-rule-set))) (define infix->prefix (case-lambda ((expr failure) (call/cc (lambda (return) (let ((rs (current-operator-rule-set))) (map-all-list (cute infix->prefix-1 <> rs (lambda (e) (return (failure e)))) expr))))) ((expr) (infix->prefix expr (lambda (e) #f))))) (define (infix->prefix-1 expr rs fail) (cond ((and (pair? expr) (null? (cdr expr))) (car expr)) ((and (pair? expr) (null? (cdr (cdr expr))) (rule-set-infix-ref rs (car expr))) => (lambda (op) (if (operator-unit-unary? op) (let ((arg (car (cdr expr))) (unit (operator-unit op))) (if (rule-set-infix-ref rs arg) (fail expr) (if (unit-inv? unit) expr arg))) (fail expr)))) ((minimum-precedence expr rs) => (lambda (op) (let ->prefix ((expr (list-copy expr)) (op op)) (define (make-prefix left op-sym right) (define (->infix left op-sym right) (append left (cons op-sym right))) (let ((left-op (minimum-precedence left rs)) (right-op (minimum-precedence right rs)) (not-binary-only? (not (operator-prefix-binary-only? op)))) `(,(operator-prefix-symbol op) ,@(if (operator? left-op) (if (and not-binary-only? (operator-left? op) (eqv? (operator-symbol op) (operator-symbol left-op))) (cdr (->prefix left left-op)) (list (->prefix left left-op))) (if (and (pair? left) (null? (cdr left))) (if (and not-binary-only? (operator-left? op) (pair? (car left)) (eqv? (operator-symbol op) (car (car left)))) (cdr (car left)) (list (car left))) (fail (->infix left op-sym right)))) ,@(if (operator? right-op) (if (and not-binary-only? (operator-right? op) (eqv? (operator-symbol op) (operator-symbol right-op))) (cdr (->prefix right right-op)) (list (->prefix right right-op))) (if (and (pair? right) (null? (cdr right))) (if (and not-binary-only? (operator-right? op) (pair? (car right)) (eqv? (operator-symbol op) (car (car right)))) (cdr (car right)) (list (car right))) (fail (->infix left op-sym right))))))) (if (operator-right? op) (let-values (((lst op+rest) (break! (cute eqv? (operator-symbol op) <>) expr))) (let-values (((op rest) (car+cdr op+rest))) (make-prefix lst op rest))) (let ((rev-expr (reverse! expr))) (let-values (((rev-lst op+rev-rest) (break! (cute eqv? (operator-symbol op) <>) rev-expr))) (let-values (((op-sym rev-rest) (car+cdr op+rev-rest))) (make-prefix (reverse! rev-rest) op-sym (reverse! rev-lst))))))))) (else expr))) (define prefix->infix (case-lambda ((expr failure) (let ((rs (current-operator-rule-set))) (call-with-current-continuation (lambda (return) (let-values (((result _precedence) (%prefix->infix expr rs (lambda (e) (return (failure e)))))) result))))) ((expr) (prefix->infix expr (lambda (e) #f))))) (define (%prefix->infix expr rs failure) (let ->infix ((expr expr)) (define (->infix-fst expr) (let-values (((x _) (->infix expr))) x)) (if (not (pair? expr)) (values expr -inf.0) (let-values (((op-prefix-sym args) (car+cdr expr))) (cond ((rule-set-prefix-ref rs op-prefix-sym) => (lambda (op) (let ((p (operator-precedence op)) (op-sym (operator-symbol op))) (cond ((null? args) (cond ((and (not (operator-unit-inv? op)) (operator-unit op)) => (lambda (u) (values (unit-value u) -inf.0))) (else (failure expr)))) ((null? (cdr args)) (let-values (((r-expr r-p) (->infix (car args)))) (cond ((operator-unit op) => (lambda (u) (if (unit-inv? u) (if (unit-unary? u) (values `(,op-sym ,r-expr) -inf.0) (values `(,(unit-value (operator-unit op)) ,op-sym ,@(if (operator-right? op) (wrap-when (< r-p p) r-expr) (wrap-when (<= r-p p) r-expr))) p)) (values r-expr r-p)))) (else (failure expr))))) ((null? (cdr (cdr args))) (let-values (((l-expr l-p) (->infix (car args))) ((r-expr r-p) (->infix (cadr args)))) (values `(,@(if (operator-left? op) (wrap-when (< l-p p) l-expr) (wrap-when (<= l-p p) l-expr)) ,op-sym ,@(if (operator-right? op) (wrap-when (< r-p p) r-expr) (wrap-when (<= r-p p) r-expr))) p))) (else (cond ((and (operator-left? op) (operator-right? op)) (values (cdr (append-map! (lambda (arg) (let-values (((x-expr x-p) (->infix arg))) (cons op-sym (wrap-when (< x-p p) x-expr)))) args)) p)) ((operator-left? op) (let-values (((l-expr l-p) (->infix (car args)))) (values (append! (wrap-when (< l-p p) l-expr) (append-map! (lambda (arg) (let-values (((l-expr l-p) (->infix arg))) (cons op-sym (wrap-when (<= l-p p) l-expr)))) (cdr args))) p))) ((operator-right? op) (let ((rev-args (reverse args))) (let-values (((r-expr r-p) (->infix (car rev-args)))) (values (reverse! (append-reverse! (wrap-when (< r-p p) r-expr) (append-map! (lambda (arg) (let-values (((r-expr r-p) (->infix arg))) (cons op-sym (wrap-when (<= r-p p) r-expr)))) (cdr rev-args)))) p)))) (else (failure expr)))))))) (else (values (map ->infix-fst expr) -inf.0))))))) (define (minimum-precedence expr rs) (let ((dummy (operator 'dummy +inf.0 'both))) (let ((result (fold (lambda (x y-op) (cond ((rule-set-infix-ref rs x) => (lambda (x-op) (if (<= (operator-precedence x-op) (operator-precedence y-op)) x-op y-op))) (else y-op))) dummy expr))) (if (eq? dummy result) #f result)))) (define (operator-unit-inv? x) (cond ((operator-unit x) => (cut unit-inv? <>)) (else #f))) (define (operator-unit-unary? op) (cond ((operator-unit op) => unit-unary?) (else #f))) (define (operator-prefix-binary-only? op) (cond ((operator-prefix op) => prefix-binary-only?) (else #f))) (define (wrap-when b? x) (if b? (list x) x)) (define (map-all-list f expr) (f (map-cars f expr))) (define (map-cars f expr) (if (pair? expr) (if (pair? (car expr)) (cons (f (map-cars f (car expr))) (map-cars f (cdr expr))) (cons (car expr) (map-cars f (cdr expr)))) expr)) ))