;;; Vikalpa --- Prove S-expression ;;; Copyright © 2020 Masaya Tojo ;;; ;;; This file is part of Vikalpa. ;;; ;;; Vikalpa is free software; you can redistribute it and/or modify it ;;; under the terms of the GNU General Public License as published by ;;; the Free Software Foundation; either version 3 of the License, or ;;; (at your option) any later version. ;;; ;;; Vikalpa is distributed in the hope that it will be useful, but ;;; WITHOUT ANY WARRANTY; without even the implied warranty of ;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ;;; General Public License for more details. ;;; ;;; You should have received a copy of the GNU General Public License ;;; along with Vikalpa. If not, see . (define-module (vikalpa) #:export (rewrite) #:use-module (vikalpa syntax) #:use-module (vikalpa primitive) #:use-module (ice-9 match) #:use-module (ice-9 format) #:use-module (ice-9 control) #:use-module ((srfi srfi-1) #:select (every any member lset-union fold)) #:use-module (srfi srfi-8) #:use-module (srfi srfi-11) #:use-module (srfi srfi-26)) (define (debug f . args) (if #f (apply format #t f args) #t)) (define (option p?) (lambda (x) (or (p? x) (not x)))) (define (list-of p?) (lambda (x) (and (list? x) (every p? x)))) ;; (expression? x) -> boolean? (define (expression? expr) (cond ((expr-quoted? expr) (or (integer? (expr-unquote expr)) (boolean? (expr-unquote expr)) (symbol? (expr-unquote expr)))) ((form? expr) (and (expression? (car expr)) (list? (cdr expr)) (every expression? (cdr expr)))) ((variable? expr) #t) (else #f))) (define (form? expr) (and (pair? expr) (not (eq? (car expr) 'quote)))) (define (form-name expr) (car expr)) (define (form-args expr) (cdr expr)) ;; (define (expression-fold2 f fail acc expr1 expr2) ;; (cond ((and (form? expr1) ;; (form? expr2) ;; (eq? (form-name expr1) ;; (form-name expr2))) ;; (f (cons (form-name expr1) ;; (fold (lambda (x acc) ;; (expression-fold2 f fail <> <> acc)) ;; (form-args expr1) ;; (form-args expr2))))) ;; ((or (form? expr1) ;; (form? expr2)) ;; (fail expr1 expr2 acc)) ;; (else (f expr1 expr2 acc)))) ;; (define (expression-fold f acc expr) ;; (cond ((form? expr) ;; (f (cons (form-name expr) ;; (map (cut expression-fold f acc <>) ;; (form-args expr))) ;; acc)) ;; (else (f expr acc)))) (define (expression-functions expr) (cond ((form? expr) (cons (form-name expr) (apply lset-union eq? (map expression-functions (form-args expr))))) (else '()))) (define (expression-vars expr) (cond ((form? expr) (apply lset-union eq? (map expression-vars (form-args expr)))) ((variable? expr) (list expr)) (else '()))) ;; (expr-quoted? x) -> boolean? (define (expr-quoted? expr) (and (pair? expr) (eq? 'quote (car expr)) (pair? (cdr expr)) ((const #t) (car (cdr expr))) (null? (cdr (cdr expr))))) (define (expr-unquote expr) (car (cdr expr))) ;; (expr-quoted? x) -> boolean? (define (expr-quote expr) (list 'quote expr)) ;; (variable? x) -> boolean? (define (variable? x) (symbol? x)) ;; (variable=? variable? variable?) -> boolean? (define (variable=? v1 v2) (eq? v1 v2)) ;; (rule? x) -> boolean? (define (rule? x) (and (list? x) (= 5 (length x)) (eq? (car x) 'rule) (let ((vars (list-ref x 1))) (and (list? vars) (every variable? vars))) (let ((preconds (list-ref x 2))) (and (list? preconds) (every expression? preconds))) (expression? (list-ref x 3)) (expression? (list-ref x 4)))) ;; (rule (list-of variable?) expression? expression?) -> rule? (define (rule vars preconds lhs rhs) (list 'rule vars preconds lhs rhs)) ;; (rule-vars rule?) -> (list-of variable?) (define (rule-vars r) (list-ref r 1)) ;; (rule-preconds rule?) -> expression? (define (rule-preconds r) (list-ref r 2)) ;; (rule-lhs rule?) -> expression? (define (rule-lhs r) (list-ref r 3)) ;; (rule-rhs rule?) -> expression? (define (rule-rhs r) (list-ref r 4)) ;; (environment x) -> boolean? ;; environment is alist (define (environment x) (cond ((null? x) #t) ((pair? x) (and (pair? (car x)) (variable? (car (car x))) (expression? (cdr (car x))) (environment (cdr x)))) (else #f))) (define (match-expr f context acc preconds expr1 expr2 fail) (cond ((and (expr-quoted? expr1) (expr-quoted? expr2) (equal? expr1 expr2)) (f (cons '(quoted) context) acc preconds expr1 expr2 fail)) ((and (expr-if? expr1) (expr-if? expr2)) (let*-values (((acc/test expr/test) (match-expr f '(if 1) acc preconds (expr-if-test expr1) (expr-if-test expr2) fail)) ((expr/then acc/then) (match-expr f (cons '(if 2) context) acc/test (cons (expr-if-test expr2) preconds) (expr-if-then expr1) (expr-if-then expr2) fail)) ((acc/else expr/else) (match-expr f (cons '(if 3) context) acc/then (cons (expr-not (expr-if-test expr2)) preconds) (expr-if-else expr1) (expr-if-else expr2) fail))) (values acc/else (expr-if expr/test expr/then expr/else)))) ((and (form? expr1) (form? expr2) (eq? (form-name expr1) (form-name expr2))) (let fold2 ((expr1-args (form-args expr1)) (expr2-args (form-args expr2)) (acc acc) (i 1)) (cond ((and (null? expr1-args) (null? expr2-args)) (values acc '())) ((and (pair? expr1-args) (pair? expr2-args)) (receive (first-acc first-expr) (match-expr f (cons `(,(form-name expr1) ,i) context) acc preconds (car expr1-args) (car expr2-args) fail) (receive (rest-acc rest-expr) (fold2 (cdr expr1-args) (cdr expr2-args) first-acc (+ i 1)) (values (cons first-expr rest-expr) rest-acc)))) (else (fail context acc))))) (else (fail context acc)))) ;; (apply-rule preconds rule? expression?) -> (or (cons rhs environment) #f) (define (apply-rule preconds rl expr env) (define (fail) (shift k #f)) (define (var? v) (and (member v (rule-vars rl)) #t)) (define (add-env var expr env) (cond ((assoc var env) => (match-lambda ((env-var . env-expr) (if (equal? env-expr expr) env (fail))))) (else (cons (cons var expr) env)))) (define (mat-map lhss exprs env) (cond ((and (pair? lhss) (pair? exprs)) (mat-map (cdr lhss) (cdr exprs) (mat (car lhss) (car exprs) env))) ((and (null? lhss) (null? exprs)) env) (else (fail)))) (define (mat lhs expr env) (debug "lhs ~a, expr ~a, env ~a~%" lhs expr env) (cond ((expr-quoted? lhs) (if (expr-quoted? expr) (and (equal? lhs expr) env) (fail))) ((form? lhs) (if (and (form? expr) (symbol? (form-name lhs)) (eqv? (form-name lhs) (form-name expr))) (mat-map (form-args lhs) (form-args expr) env) (fail))) ((var? lhs) (add-env lhs expr env)) (else (fail)))) (define (mat-preconds rlps k+env) (if (null? rlps) k+env (mat-preconds (cdr rlps) (any (lambda (p) (shift k (cond ((reset (mat (car rlps) p (cdr k+env))) => (lambda (env) (k (cons k env)))) (else (k #f))))) preconds)))) (define (substitute env expr) (cond ((expr-quoted? expr) expr) ((pair? expr) (cons (substitute env (car expr)) (substitute env (cdr expr)))) ((var? expr) (cond ((assoc expr env) => cdr) (else (fail)))) (else expr))) (debug "rule: ~a~%" rl) (debug "preconds: ~a~%" preconds) (debug "expr: ~a~%" expr) (reset (shift k (match (mat-preconds (rule-preconds rl) (cons k env)) ((k . env) (cond ((reset (mat (rule-lhs rl) expr env)) => (cut substitute <> (rule-rhs rl))) (else (k #f)))) (else #f))))) ;; (system? x) -> boolean? ;; system is alist (define (system? x) (cond ((null? x) #t) ((pair? x) (and (pair? (car x)) (or (proposition? (car x)) (primitive-function? (car x)) (macro? (car x)) (function? (car x))) (system? (cdr x)))) (else #f))) (define (primitive-function? x) (and (list? x) (= 4 (length x)) (variable? (list-ref x 0)) (eq? 'primitive-function (list-ref x 1)) (let ((ps (list-ref x 2))) (and (list? ps) (every procedure? ps))) (procedure? (list-ref x 3)))) ;; (primitive-function variable? (list-of procedure?) procedure?) -> primitive-function? (define (primitive-function name ps proc) (list name 'primitive-function ps proc)) (define (primitive-function-name pf) (list-ref pf 0)) (define (primitive-function-preds pf) (list-ref pf 2)) (define (primitive-function-proc pf) (list-ref pf 3)) (define (match-primitive-function pf expression) (and (pair? expression) (eq? (primitive-function-name pf) (car expression)) (list? (cdr expression)) (every identity (map (lambda (pred expr) (and (expr-quoted? expr) (pred (expr-unquote expr)))) (primitive-function-preds pf) (cdr expression))))) (define (apply-primitive-function pf expression) (apply (primitive-function-proc pf) (cdr expression))) (define (function? x) (and (list? x) (= 4 (length x)) (variable? (function-name x)) (eq? 'function (list-ref x 1)) (vars? (function-vars x)) (expression? (function-expression x)))) ;; (function variable? vars? expression?) -> function? (define/guard (function (name variable?) (vars vars?) (expr expression?)) (list name 'function vars expr)) (define (function-name f) (list-ref f 0)) (define (function-vars f) (list-ref f 2)) (define (function-expression f) (list-ref f 3)) (define (mrule? x) (and (list? x) (= 3 (length x)) (eq? 'mrule (list-ref x 0)) ((const #t) (mrule-lhs x)) ((const #t) (mrule-rhs x)))) (define (mrule lhs rhs) (list 'mrule lhs rhs)) (define (mrule-vars mrl) (define (all-vars x) (cond ((expr-quoted? x) '()) ((pair? x) (append (all-vars (car x)) (all-vars (cdr x)))) ((variable? x) (list x)) (else '()))) (all-vars (mrule-lhs mrl))) (define (mrule-lhs mrl) (list-ref mrl 1)) (define (mrule-rhs mrl) (list-ref mrl 2)) (define (macro? x) (and (list? x) (= 3 (length x)) (eq? 'macro (list-ref x 1)) (variable? (macro-name x)) (let ((mrls (macro-mrules x))) (and (list? mrls) (every mrule? mrls))))) (define (macro-name m) (list-ref m 0)) (define (macro-mrules m) (list-ref m 2)) (define (macro name rules) (list name 'macro rules)) (define (apply-mrule rl expr) (define (var? v) (and (member v (mrule-vars rl)) #t)) (call/cc (lambda (k) (define (mat-map lhs-tree expr-tree env) (cond ((and (pair? lhs-tree) (pair? expr-tree)) (mat-map (car lhs-tree) (car expr-tree) (mat-map (cdr lhs-tree) (cdr expr-tree) env))) (else (mat lhs-tree expr-tree env)))) (define (mat lhs expr env) (cond ((expr-quoted? lhs) (if (expr-quoted? expr) (and (equal? lhs expr) env) (k #f))) ((and (pair? lhs) (pair? expr)) (mat-map lhs expr env)) ((var? lhs) (cond ((assoc lhs env) => (match-lambda ((env-var . env-expr) (if (equal? env-expr expr) env (k #f))))) (else (cons (cons lhs expr) env)))) ((eqv? lhs expr) env) (else (k #f)))) (define (substitute env expr) (cond ((expr-quoted? expr) expr) ((pair? expr) (cons (substitute env (car expr)) (substitute env (cdr expr)))) ((and (variable? expr) (assoc expr env)) => cdr) (else expr))) (substitute (mat (mrule-lhs rl) expr '()) (mrule-rhs rl))))) (define (apply-macro m expr) (cond ((and (pair? expr) (eq? (macro-name m) (car expr))) (let loop ((rs (macro-mrules m))) (cond ((null? rs) expr) ((apply-mrule (car rs) expr) => identity) (else (loop (cdr rs)))))) (else #f))) (define/guard (expand (ms (list-of macro?)) (expr (const #t))) (let loop ((ms ms) (expr expr)) (cond ((null? ms) expr) (else (expand (cdr ms) (cond ((apply-macro (car ms) expr) => identity) (else expr))))))) (define/guard (expand* (ms (list-of macro?)) (expr (const #t))) (let loop ((ms ms) (expr expr)) (let ((new-expr (expand ms expr))) (if (equal? expr new-expr) (if (pair? new-expr) (cons (expand* ms (car new-expr)) (expand* ms (cdr new-expr))) new-expr) (expand* ms new-expr))))) ;; (axiom variable? vars? expression?) -> axiom? ;; axiom? is proposition (define/guard (axiom (name variable?) (vars vars?) (expr expression?)) (list name 'axiom vars expr)) (define (vars? x) (and (list? x) (every variable? x))) ;; (axiom? x) -> boolean? (define (axiom? x) (and (list? x) (= 4 (length x)) (variable? (list-ref x 0)) (eq? 'axiom (list-ref x 1)) (vars? (list-ref x 2)) (expression? (list-ref x 3)))) ;; (theorem name vars? expression?) -> theorem? (define/guard (theorem (name variable?) (vars vars?) (expr expression?)) (list name 'theorem vars expr)) ;; (theorem? x) -> boolean? ;; theorem? is proposition (define (theorem? x) (and (list? x) (= 4 (length x)) (variable? (list-ref x 0)) (eq? 'theorem (list-ref x 1)) (vars? (list-ref x 2)) (expression? (list-ref x 3)))) (define (theorem-name x) (list-ref x 0)) ;; (proposition? x) -> boolean? (define (proposition? x) (or (axiom? x) (theorem? x))) (define (proposition-name x) (list-ref x 0)) (define (proposition-vars x) (list-ref x 2)) (define (proposition-expression x) (list-ref x 3)) (define (proposition-rules x) (expression->rules (proposition-vars x) '() (proposition-expression x))) ;; (rewriter path? command?) -> rewriter? (define (rewriter p c) (cons p c)) (define (rewriter-path r) (car r)) (define (rewriter-command r) (cdr r)) (define (rewriter? x) (and (pair? x) (path? (car x)) (command? (cdr x)))) ;; (sequence? x) -> boolean? (define (sequence? x) (and (list? x) (every rewriter? x))) ;; (path? x) -> boolean? ;; path is list (define (path? x) (and (list? x) (every natural? x))) ;; (command-name? x) -> booelan? (define (command? x) (and (pair? x) (command-name? (car x)) ((list-of command-option?) (cdr x)))) ;; (command-name? x) -> booelan? (define (command-name? x) (or (symbol? x) ((list-of symbol?) x))) ;; (command-option? x) -> boolean? (define (command-option? x) (and (pair? x) (case (car x) ((set) (and (list? x) (= 3 (length x)) (variable? (list-ref x 1)) (expression? (list-ref x 2)))) (else #f)))) (define (command-name x) (car x)) (define (command-options x) (cdr x)) ;; (extract path? expression? preconds? procedure?) -> (values expression? procedure?) (define (extract path expr fail) (if (null? path) (values expr '() identity) (let ((i (car path))) (cond ((expr-if? expr) (let ((precond (expr-if-test expr))) (receive (extracted-expr extracted-preconds builder) (extract (cdr path) (list-ref expr i) fail) (values extracted-expr (case i ((1) '()) ((2) (cons precond extracted-preconds)) ((3) (cons (expr-not precond) extracted-preconds)) (else (fail "(if) invaild path" path))) (lambda (x) (append (list-head expr i) (list (builder x)) (list-tail expr (+ i 1)))))))) ((< i (length expr)) (receive (extracted-expr preconds builder) (extract (cdr path) (list-ref expr i) fail) (values extracted-expr preconds (lambda (x) (append (list-head expr i) (list (builder x)) (list-tail expr (+ i 1))))))) (else (fail "invalid path" path)))))) (define (function->rules x) (list (rule (function-vars x) '() (cons (function-name x) (function-vars x)) (function-expression x)) (rule (function-vars x) '() (function-expression x) (cons (function-name x) (function-vars x))))) (define (parse-options/prop ops) (if (null? ops) (values '()) (receive (env) (parse-options/prop (cdr ops)) (case (caar ops) ((set) (let ((op (car ops))) (cons (cons (list-ref op 1) (list-ref op 2)) env))) (else (error "invalid option:" (car ops))))))) (define (rewrite/prop cmd b prop preconds expr fail) (receive (env) (parse-options/prop (command-options cmd)) (cond ((any (cut apply-rule preconds <> expr env) (proposition-rules prop)) => identity) (else (fail (format #f "no match-rule (~a)" cmd)))))) ;; (rewrite system? rewriter? expression? procedure?) -> expr (define (rewrite1 b expr fail r) (let* ((cmd (rewriter-command r)) (cmd/name (command-name cmd))) (debug "~%~%cmd: ~a~%" cmd) #;(format #t "~%~%cmd: ~a~%" cmd) (receive (extracted-expr preconds builder) (extract (rewriter-path r) expr fail) (builder (cond ((equal? cmd/name '(look)) (format #t "~y" extracted-expr) (error "look")) ((equal? cmd/name '(expand)) (expand (filter macro? b) extracted-expr)) ((equal? cmd/name '(expand*)) (expand* (filter macro? b) extracted-expr)) ((and (symbol? cmd/name) (assoc cmd/name b)) => (lambda (x) (cond ((proposition? x) (rewrite/prop cmd b x preconds extracted-expr fail)) ((function? x) (cond ((any (cut apply-rule '() <> extracted-expr '()) (function->rules x)) => identity) (else (fail (format #f "no match-function (~a)" cmd))))) ((primitive-function? x) (cond ((match-primitive-function x extracted-expr) (apply-primitive-function x extracted-expr)) (else (fail "can't apply-primitive-function (~a)" cmd)))) ((macro? x) (cond ((apply-macro x extracted-expr) => identity) (else (fail "macro fail")))) (else (fail "rewrite error"))))) (else (fail "no cmd (~a)" cmd))))))) (define/guard (rewrite (b system?) (expr expression?) (seq sequence?)) (let loop ((expr expr) (seq seq)) (debug "~y~%" expr) #;(format #t "~y~%" expr) (if (null? seq) expr (loop (rewrite1 b expr (lambda (x . args) (apply error (format #f "rewrite: ~a" x) args)) (car seq)) (cdr seq))))) (define (expr-not x) (list 'not x)) (define (expr-equal? x) (and (list? x) (= 3 (length x)) (eq? 'equal? (list-ref x 0)) (expression? (list-ref x 1)) (expression? (list-ref x 2)))) (define (expr-equal-lhs x) (list-ref x 1)) (define (expr-equal-rhs x) (list-ref x 2)) (define (expr-if? x) (and (list? x) (= 4 (length x)) (eq? 'if (list-ref x 0)) (expression? (expr-if-test x)) (expression? (expr-if-then x)) (expression? (expr-if-else x)))) (define (expr-if x y z) (list 'if x y z)) (define (expr-if-test x) (list-ref x 1)) (define (expr-if-then x) (list-ref x 2)) (define (expr-if-else x) (list-ref x 3)) (define (expression->rules vars preconds expr) (if (expr-if? expr) (append (expression->rules vars (cons (expr-if-test expr) preconds) (expr-if-then expr)) (expression->rules vars (cons (expr-not (expr-if-test expr)) preconds) (expr-if-else expr))) (if (expr-equal? expr) (list (rule vars preconds (expr-equal-lhs expr) (expr-equal-rhs expr)) (rule vars preconds (expr-equal-rhs expr) (expr-equal-lhs expr))) '()))) (define (proposition->rules def) (expression->rules (proposition-vars def) '() (proposition-expression def))) (define current-system (make-parameter '())) (define (add-system x) (let ((b (current-system))) (current-system (cond ((assoc (proposition-name x) b) => (lambda (prop) (if (equal? x prop) b (error "add-system: error")))) (else (cons x b)))))) (define-syntax define-axiom (syntax-rules () ((_ name (var ...) expr) (add-system (axiom 'name '(var ...) 'expr))))) (define-syntax define-theorem (syntax-rules () ((_ name (var ...) expr) (add-system (theorem 'name '(var ...) 'expr))))) (define-syntax define-function (syntax-rules () ((_ name (var ...) expr) (let ((f (function 'name '(var ...) 'expr))) (add-system f) f)))) (define-syntax define-macro (syntax-rules () ((_ name () ((lhs1 . lhs2) rhs) ...) (add-system (macro 'name (list (mrule '(lhs1 . lhs2) 'rhs) ...)))))) (define-syntax define-system (syntax-rules () ((_ name (systems ...) expr ...) (define* (name #:optional (parent '())) (parameterize ([current-system ((compose systems ... identity) parent)]) expr ... (unless (system? (current-system)) (error "define-system: error")) (current-system)))))) (define (atom? x) (not (pair? x))) (define-system prelude () (define-axiom equal-same (x) (equal? (equal? x x) '#t)) (define-axiom equal-swap (x y) (equal? (equal? x y) (equal? y x))) (define-axiom equal-if (x y) (if (equal? x y) (equal? x y) '#t)) (define-axiom atom/cons (x y) (equal? (atom? (cons x y)) '#f)) (define-axiom car/cons (x y) (equal? (car (cons x y)) x)) (define-axiom cdr/cons (x y) (equal? (cdr (cons x y)) y)) (define-axiom cons/car+cdr (x) (if (atom? x) '#t (equal? (cons (car x) (cdr x)) x))) (define-axiom if-nest (x y z) (if x (equal? (if x y z) y) (equal? (if x y z) z))) (define-axiom if-nest-t (x y z) (if x (equal? (if x y z) y) '#t)) (define-axiom if-nest-f (x y z) (if x '#t (equal? (if x y z) z))) (define-axiom if-false (x y) (equal? (if '#f x y) y)) (define-axiom if-same (x y) (equal? (if x y y) y)) (define-axiom natural/size (x) (equal? (natural? (size x)) '#t)) (define-axiom size/car (x) (if (atom? x) '#t (equal? (< (size (car x)) (size x)) '#t))) (define-axiom size/cdr (x) (if (atom? x) '#t (equal? (< (size (cdr x)) (size x)) '#t))) (define-macro list () ((list) '()) ((list x . y) (cons x (list . y)))) (define-macro + () ((+) '0) ((+ x) x) ((+ x . xs) (b+ x (+ . xs)))) (define-macro - () ((- x) (u- x)) ((- x . xs) (+ x . (u- (+ . xs))))) (define-macro and () ((and) '#t) ((and x) x) ((and x . xs) (if x (and . xs) #f))) (define-macro or () ((or) '#f) ((or x) x) ((or x . xs) (if x x (or . xs)))) (define-axiom if-not (x y z) (equal? (if (not x) y z) (if x z y)))) (define (measure? x) (and (pair? x) (variable? (car x)) (list? (cdr x)) (<= 1 (length (cdr x))))) (define (measure-function-name m) (car m)) (define (measure-function-vars m) (cdr m)) (define (subst lhs rhs expr) (apply-rule '() (rule (expression-vars lhs) '() lhs rhs) expr '())) (define (function-form f) (cons (function-name f) (function-vars f))) ;; (define (make-totality-claim m f) ;; (let ((vs (function-vars f)) ;; (fexpr (function-expression f))) ;; (expression-fold (lambda (expr) ;; (cond ;; ((form? expr) ;; ))) ;; (function-expression f)))) (define-system app/system (prelude) (define-function app (x y) (if (atom? x) y (cons (car x) (app (cdr x) y)))) (define-theorem associate-app (x y z) (equal? (app (app x y) z) (app x (app y z)))) #; (rewrite (app/system) '(if (natural? (size (app a b))) (if (atom? a) '#t (< (size (app (cdr a) b)) (size (app a b)))) '#t) '(((2 3 2 1) app) ((2 3 2 1) if-nest) ((2 3 1 1) cdr/cons (set x (car a))) ((2 3) if-same (set x (atom? (cons (car a) (app (cdr a) b))))) ((2 3 3) size/cdr) ((2 3 1) atom/cons) ((2 3) if-false) ((2) if-same) (() if-same))) #; (rewrite (app/system) '(if (atom? a) (equal? (app (app a b) c) (app a (app b c))) (if (equal? (app (app (cdr a) b) c) (app (cdr a) (app b c))) (equal? (app (app a b) c) (app a (app b c))) '#t)) '(((2 2) app) ((2 2) if-nest-t) ((2 1 1) app) ((2 1 1) if-nest-t) ((2) equal-same) ((3 2 1 1) app) ((3 2 1 1) if-nest-f) ((3 2 2) app) ((3 2 2) if-nest-f) ((3 2 2 2) equal-if) ((3 2 1) app) ((3 2 1 3 1) car/cons) ((3 2 1 3 2 1) cdr/cons) ((3 2 1 1) atom/cons) ((3 2 1) if-false) ((3 2) equal-same) ((3) if-same) (() if-same))) ) (define (size x) (if (pair? x) (+ 1 (size (car x)) (size (cdr x))) 0)) (define (app x y) (if (atom? x) y (cons (car x) (app (cdr x) y))))