diff options
author | Masaya Tojo <masaya@tojo.tokyo> | 2021-07-22 10:49:02 +0900 |
---|---|---|
committer | Masaya Tojo <masaya@tojo.tokyo> | 2021-07-22 11:56:49 +0900 |
commit | c3b18da12dd6f6510f960edb66669733ccdeb694 (patch) | |
tree | 51dc8c96878a92f6bd20d7e1775f14185a5129c4 /list-monad.lisp | |
parent | 658812d37e3be083623a63c9839ac056451df1cd (diff) |
リストモナドがモナド則を満たすことを示す
Diffstat (limited to 'list-monad.lisp')
-rw-r--r-- | list-monad.lisp | 102 |
1 files changed, 102 insertions, 0 deletions
diff --git a/list-monad.lisp b/list-monad.lisp new file mode 100644 index 0000000..f7a6425 --- /dev/null +++ b/list-monad.lisp @@ -0,0 +1,102 @@ +;;; list-monad.lisp +;;; ACL2 でリストモナドがモナド則を満たしていることを示す + +;; ACL2 では第一級の関数は使えないため、値としての関数は連想リストで表現する +;; ACL2 には apply$ という限定的な高階関数を実現する機能があるがよく分かってい +;; ないので今回は使用しない +;; https://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index-seo.php/ACL2____APPLY_42?path=3463/6113/3222/31/23 +(defmacro apply-function (f x) + `(cdr (assoc-equal ,x ,f))) + +;;; リストモナドの定義 +(defmacro unit (x) + `(list ,x)) + +(defun bind (x f) + (cond + ((endp x) nil) + (t + (append (apply-function f (car x)) + (bind (cdr x) f))))) + +;;; モナド則を証明するのに必要な関数と定理 +;; リストを返す関数かどうかを確認する +(defun to-list-function-p (x) + (if (endp x) + t + (and (true-listp (cdar x)) + (to-list-function-p (cdr x))))) + +;; 定義域 s で unit ととして振舞う関数を作成する +(defun make-unit-function (s) + (cond + ((endp s) nil) + (t (acons (car s) + (unit (car s)) + (make-unit-function (cdr s)))))) + +;; make-unit-function が定義域 s で +;; unit ととして振舞うことを示す定理 +(defthm theorem-of-make-unit-function + (implies (member e s) + (equal (apply-function (make-unit-function s) e) + (unit e)))) + +;; append したものを bind するのと +;; bind したものを append するのは同値 +(defthm bind-append + (implies (to-list-function-p g) + (equal (bind (append x y) g) + (append (bind x g) + (bind y g))))) + +;; 定義域 s で +;; (lambda (x) (bind (apply-function g x) h)) +;; を表現する関数 +(defun make-apply-and-bind-function (s g h) + (if (endp s) + nil + (acons (car s) + (bind (apply-function g (car s)) h) + (make-apply-and-bind-function (cdr s) g h)))) + +;; 定義域 s で +;; (lambda (x) (bind (apply-function g x) h)) +;; ととして振舞うことを示す定理 +(defthm theorem-of-make-apply-and-bind-function + (implies (and (member x s) + (to-list-function-p g) + (to-list-function-p h)) + (equal (apply-function (make-apply-and-bind-function s g h) x) + (bind (apply-function g x) h)))) + +;; associativity-of-bind の補助定理 +(defthm associativity-of-bind-lemma + (implies (and (to-list-function-p g) + (to-list-function-p h) + (member e s)) + (equal (cdr (assoc-equal e (make-apply-and-bind-function s g h))) + (bind (cdr (assoc-equal e g)) h)))) + +;;; モナド則 +;; unit x >>= f ≡ f x +(defthm left-identity + (implies (to-list-function-p f) + (equal (bind (unit x) f) + (apply-function f x)))) + +;; m >>= unit ≡ m +(defthm right-identity + (implies (and (true-listp m) + (subsetp m s)) + (equal (bind m (make-unit-function s)) + m))) + +;; m >>= (\x -> g x >>= h) ≡ (m >>= g) >>= h +(defthm associativity-of-bind + (implies (and (true-listp m) + (to-list-function-p g) + (to-list-function-p h) + (subsetp m s)) + (equal (bind m (make-apply-and-bind-function s g h)) + (bind (bind m g) h)))) |