diff options
-rw-r--r-- | permutations.lisp | 333 |
1 files changed, 141 insertions, 192 deletions
diff --git a/permutations.lisp b/permutations.lisp index 66ecc74..89b978e 100644 --- a/permutations.lisp +++ b/permutations.lisp @@ -1,9 +1,15 @@ -(defun insert (x y) - (if (endp y) - (list x) - (cons (append x y) - (insert (cons (car y) x) - (cdr y))))) +(defun mapcar-cons (e x) + (if (endp x) + nil + (cons (cons e (car x)) + (mapcar-cons e (cdr x))))) + +(defun insert (e x) + (if (endp x) + (list (list e)) + (cons (cons e x) + (mapcar-cons (car x) + (insert e (cdr x)))))) (defun mappend-insert (x y) (if (endp y) @@ -14,42 +20,13 @@ (defun permutations (x) (if (endp x) (list nil) - (mappend-insert (list (car x)) + (mappend-insert (car x) (permutations (cdr x))))) -(defun sum-of-lens (x) - (if (endp x) - 0 - (+ (len (car x)) - (sum-of-lens (cdr x))))) - -(defun sum-of-1+lens (x) - (if (endp x) - 0 - (+ (+ 1 (len (car x))) - (sum-of-1+lens (cdr x))))) - -(defthm sum-of-lens-append - (equal (sum-of-lens (append x y)) - (+ (sum-of-lens x) - (sum-of-lens y)))) - -(defthm len-append - (equal (len (append x y)) - (+ (len x) (len y)))) - -(defthm sum-of-lens-insert - (equal (sum-of-lens (insert x y)) - (* (+ (len x) (len y)) - (+ 1 (len y))))) - -(defthm len-insert - (equal (len (insert x y)) - (+ 1 (len y)))) - -(defthm len-mappend-insert - (equal (len (mappend-insert (list x) y)) - (sum-of-1+lens y))) +(defun factorial (n) + (if (zp n) + 1 + (* n (factorial (1- n))))) (defun mapcar-len (x) (if (endp x) @@ -63,198 +40,170 @@ (+ (car x) (sum (cdr x))))) -(defun seq (x n) - (if (zp n) - nil - (cons x (seq x (1- n))))) - -(defun mapcar-product (x y) - (if (or (endp x) (endp y)) - nil - (cons (* (car x) (car y)) - (mapcar-product (cdr x) (cdr y))))) - (defun mapcar-sum (x y) (if (or (endp x) (endp y)) nil (cons (+ (car x) (car y)) (mapcar-sum (cdr x) (cdr y))))) -(defthm sum-of-lens-equal-sum-mapcar-len - (equal (sum-of-lens x) - (sum (mapcar-len x)))) +(defun repeat (x n) + (if (zp n) + nil + (cons x + (repeat x (1- n))))) -(defthm sum-of-1+lens-equal-sum-1+-len - (equal (sum-of-1+lens x) - (sum (mapcar-sum (seq 1 (len x)) - (mapcar-len x))))) +(defun repeatedp (x) + (if (or (endp x) + (endp (cdr x))) + t + (and (equal (car x) (cadr x)) + (repeatedp (cdr x))))) -(defthm nat-listp-mapcar-len - (nat-listp (mapcar-len x))) +;; for len-insert +(defthm len-mapcar-cons + (equal (len (mapcar-cons e x)) + (len x))) -(defthm sum-mapcar-sum - (implies (equal (len x) (len y)) - (equal (sum (mapcar-sum x y)) - (+ (sum x) - (sum y))))) +;; for len-mappend-insert +(defthm len-append + (equal (len (append x y)) + (+ (len x) + (len y)))) -(defthm len-mapcar-len - (equal (len (mapcar-len x)) (len x))) +;; for len-permutations-lemma +(defthm len-mappend-insert + (equal (len (mappend-insert e x)) + (sum (mapcar-sum (mapcar-len x) + (repeat 1 (len x)))))) -(defthm len-mapcar-product +;; for len-permutations-lemma +(defthm sum-mapcar-sum (implies (equal (len x) (len y)) - (equal (len (mapcar-product x y)) - (len x)))) - -(defthm mapcar-product-one-seq - (implies (acl2-number-listp x) - (equal (mapcar-product (seq 1 (len x)) x) - x))) + (equal (sum (mapcar-sum x y)) + (+ (sum x) (sum y))))) -(defthm len-seq +;; for len-permutations-lemma +(defthm len-repeat (implies (natp n) - (equal (len (seq x n)) + (equal (len (repeat x n)) n))) -(defthm sum-seq - (implies (natp n) - (equal (sum (seq x n)) - (* x n)))) - -(defthm mapcar-distributivity - (equal (* x (sum y)) - (sum (mapcar-product (seq x (len y)) - y)))) +;; for len-permutations-lemma +(defthm len-mapcar-len + (equal (len (mapcar-len x)) + (len x))) -(defthm len-mapcar-sum - (implies (equal (len x) (len y)) - (equal (len (mapcar-sum x y)) - (len x)))) +;; for len-permutations-lemma +(defthm sum-repeat-1 + (implies (natp n) + (equal (sum (repeat 1 n)) + n))) -(defthm mapcar-product-com - (implies (equal (len x) (len y)) - (equal (mapcar-product x y) - (mapcar-product y x)))) +;; for len-permutations-lemma +(defthm sum-repeatedp + (implies (and (nat-listp x) + (repeatedp x)) + (equal (sum x) + (if (consp x) + (* (car x) + (len x)) + 0)))) -(defthm mapcar-len-insert - (equal (mapcar-len (insert x y)) - (seq (+ (len x) (len y)) - (+ 1 (len y))))) +;; for len-permutations-lemma +(defthm nat-listp-mapcar-len + (nat-listp (mapcar-len x))) -(defun mapcar-len-mappend-insert (x) - (if (endp x) - nil - (append (seq (+ 1 (len (car x))) - (+ 1 (len (car x)))) - (mapcar-len-mappend-insert (cdr x))))) +;; for repeatedp-mapcar-len-mappend-insert (defthm mapcar-len-append (equal (mapcar-len (append x y)) (append (mapcar-len x) (mapcar-len y)))) -(defthm theorem-of-mapcar-len-mappend-insert - (equal (mapcar-len (mappend-insert (list x) y)) - (mapcar-len-mappend-insert y))) - -(defun sum-mapcar-len-mappend-insert (x) - (if (endp x) - 0 - (+ (* (+ 1 (len (car x))) - (+ 1 (len (car x)))) - (sum-mapcar-len-mappend-insert (cdr x))))) - -(defthm sum-append - (equal (sum (append x y)) - (+ (sum x) - (sum y)))) - -(defthm theorem-of-sum-mapcar-len-mappend-insert - (equal (sum (mapcar-len-mappend-insert x)) - (sum-mapcar-len-mappend-insert x))) - -(defun seqp (x) - (if (or (endp x) - (endp (cdr x))) - t - (and (equal (car x) - (cadr x)) - (seqp (cdr x))))) - -(defmacro same-len-p (x) - `(seqp (mapcar-len ,x))) - -(defthm sum-mapcar-len-mappend-insert-permutations - (implies (same-len-p x) - (equal (sum-mapcar-len-mappend-insert x) - (if (consp x) - (* (+ 1 (len (car x))) - (+ 1 (len (car x))) - (len x)) - 0)))) - -(defthm same-len-p-insert - (implies (true-listp y) - (same-len-p (insert x y)))) - -(defthm seqp-append - (iff (seqp (append x y)) - (if (consp x) - (if (consp y) - (and (seqp x) - (seqp y) - (equal (car x) (car y))) - (seqp x)) - (seqp y)))) - -(defthm car-seq - (implies (consp (seq x n)) - (equal (car (seq x n)) x))) - -(defthm car-mapcar-len-mappend-insert - (implies (consp (mapcar-len-mappend-insert x)) - (equal (car (mapcar-len-mappend-insert x)) - (+ 1 (len (car x)))))) +;; for repeatedp-mapcar-len-mappend-insert +(defthm repeatedp-append + (equal (repeatedp (append x y)) + (cond + ((endp x) (repeatedp y)) + ((endp y) (repeatedp x)) + (t + (and (repeatedp x) + (repeatedp y) + (equal (car x) (car y))))))) + +;; for mapcar-len-insert +(defthm mapcar-len-mapcar-cons + (equal (mapcar-len (mapcar-cons e x)) + (mapcar-sum (mapcar-len x) + (repeat 1 (len x))))) + +;; mapcar-len-insert +(defthm len-insert + (equal (len (insert e x)) + (+ 1 (len x)))) -(defthm seqp-seq - (seqp (seq x n))) +;; for repeatedp-mapcar-len-mappend-insert +(defthm mapcar-len-insert + (equal (mapcar-len (insert e x)) + (repeat (+ 1 (len x)) + (+ 1 (len x))))) +;; for repeatedp-mapcar-len-mappend-insert (defthm car-append (equal (car (append x y)) + (if (endp x) + (car y) + (car x)))) + +;; for repeatedp-mapcar-len-mappend-insert +(defthm car-repeat + (equal (car (repeat x n)) + (if (zp n) + nil + x))) + +;; for repeatedp-mapcar-len-mappend-insert +(defthm repeatedp-repeat + (repeatedp (repeat x n))) + +;; for repeatedp-mapcar-len-mappend-insert +(defthm car-mapcar-len-mappend-insert + (equal (car (mapcar-len (mappend-insert e x))) (if (consp x) - (car x) - (car y)))) + (+ 1 (len (car x))) + nil))) -(defthm seqp-mapcar-len-mappend-insert - (implies (same-len-p x) - (seqp (mapcar-len-mappend-insert x)))) +;; for len-permutations-lemma +(defthm repeatedp-mapcar-len-mappend-insert + (implies (repeatedp (mapcar-len x)) + (repeatedp (mapcar-len (mappend-insert e x))))) -(defthm same-len-p-permutations - (same-len-p (permutations x))) +;; for len-permutations-lemma +(defthm repeatedp-mapcar-len-permutations + (repeatedp (mapcar-len (permutations x)))) -(defthm len-car-insert - (equal (len (car (insert x y))) - (+ (len x) (len y)))) +;; for len-permutations-lemma +(defthm consp-mapcar-len-mappend-insert + (consp (mapcar-len (mappend-insert e (permutations x))))) +;; for len-permutations-lemma (defthm len-car-mappend-insert - (implies (and (consp (mappend-insert (list x) y)) - (same-len-p y)) - (equal (len (car (mappend-insert (list x) y))) - (+ 1 (len (car y)))))) + (equal (len (car (mappend-insert e x))) + (if (consp x) + (+ 1 (len (car x))) + 0))) +;; for len-permutations-lemma (defthm len-car-permutations - (implies (consp (permutations x)) - (equal (len (car (permutations x))) - (len x)))) + (equal (len (car (permutations x))) + (len x))) +;; for len-permutations (defthm len-permutations-lemma - (equal (sum (mapcar-len (permutations x))) - (* (len x) (len (permutations x))))) - -(defun factorial (n) - (if (zp n) - 1 - (* n (factorial (1- n))))) + (equal (len (mappend-insert e (permutations x))) + (+ (len (permutations x)) + (* (len x) + (len (permutations x)))))) (defthm len-permutations (equal (len (permutations x)) |