blob: 5028a1345d0dcdfa4b5be5689be3eca543429f5c (
about) (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
|
(defmacro zero? (x)
`(equal ,x nil))
(defmacro z? (x)
`(atom ,x))
(defmacro succ (x)
`(cons nil ,x))
(defmacro pred (x)
`(cdr ,x))
(defun nat? (x)
(if (z? x)
(null x)
(and (equal (car x) nil)
(nat? (pred x)))))
(defthm zero-is-nat
(implies (zero? x)
(nat? x)))
(defun nat= (x y)
(cond
((and (z? x) (z? y)) t)
((or (z? x) (z? y)) nil)
(t (nat= (pred x) (pred y)))))
(defthm nat=-reflexive
(nat= x x))
(defthm nat=-symmetric
(equal (nat= x y)
(nat= y x)))
(defthm nat=-transitive
(implies (and (nat= x y)
(nat= y z))
(nat= x z)))
(defthm nat=-to-equal
(implies (and (nat? x)
(nat? y))
(equal (nat= x y)
(equal x y))))
(defun nat+ (x y)
(if (z? y)
x
(succ (nat+ x (pred y)))))
(defthm nat+-commutative
(implies (and (nat? x)
(nat? y))
(equal (nat+ x y)
(nat+ y x))))
(defthm nat+-left-zero
(implies (and (nat? x)
(z? x)
(nat? y))
(equal (nat+ x y)
y)))
(defthm nat+-right-cancellative
(equal (equal (nat+ x k) (nat+ y k))
(equal x y)))
(defthm nat+-left-cancellative
(implies (and (nat? x)
(nat? y)
(nat? k))
(equal (equal (nat+ k x) (nat+ k y))
(equal x y)))
:hints (("Goal" :in-theory (disable nat+-commutative)
:use ((:instance nat+-commutative
(x x)
(y k))
(:instance nat+-commutative
(x y)
(y k))))))
(defthm associativity-of-nat+
(equal (nat+ x (nat+ y z))
(nat+ (nat+ x y) z)))
(defun nat* (x y)
(if (z? y)
nil
(nat+ x (nat* x (pred y)))))
(defthm nat*-left-one
(equal (nat* x (succ nil))
x))
(defthm nat*-right-one
(equal (nat* x (succ nil))
x))
(defthm nat*-commutative
(implies (and (nat? x)
(nat? y))
(equal (nat* x y)
(nat* y x))))
(defthm nat?-nat*
(implies (and (nat? x)
(nat? y))
(nat? (nat* x y))))
(defthm nat*-left-zero
(implies (and (z? x)
(nat? x))
(equal (nat* x y)
nil)))
(defthm distributivity-of-nat*
(implies (and (nat? x)
(nat? y)
(nat? z))
(equal (nat* x (nat+ y z))
(nat+ (nat* x y)
(nat* x z)))))
(defthm associativity-of-nat*
(implies (and (nat? x)
(nat? y)
(nat? z))
(equal (nat* x (nat* y z))
(nat* (nat* x y) z)))
:hints (("Goal" :in-theory (disable nat*-commutative)
:use ((:instance nat*-commutative
(x (cdr z))
(y (nat* x y)))))))
|