aboutsummaryrefslogtreecommitdiff
path: root/peano.lisp
blob: 8c7f7d3e2b84b6d8a9edb47d885a62627f1e279c (about) (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
(defmacro zero? (x)
  `(equal ,x nil))

(defmacro z? (x)
  `(atom ,x))

(defmacro succ (x)
  `(cons nil ,x))

(defmacro pred (x)
  `(cdr ,x))

(defun nat? (x)
  (if (z? x)
      (null x)
      (and (equal (car x) nil)
           (nat? (pred x)))))

(defthm zero-is-nat
  (implies (zero? x)
           (nat? x)))

(defun nat= (x y)
  (cond
    ((and (z? x) (z? y)) t)
    ((or (z? x) (z? y)) nil)
    (t (nat= (pred x) (pred y)))))

(defthm nat=-reflexive
  (nat= x x))

(defthm nat=-symmetric
  (equal (nat= x y)
         (nat= y x)))

(defthm nat=-transitive
  (implies (and (nat= x y)
                (nat= y z))
           (nat= x z)))

(defthm nat=-to-equal
  (implies (and (nat? x)
                (nat? y))
           (equal (nat= x y)
                  (equal x y))))

(defun nat+ (x y)
  (if (z? y)
      x
      (succ (nat+ x (pred y)))))

(defthm nat+-commutative
  (implies (and (nat? x)
                (nat? y))
           (equal (nat+ x y)
                  (nat+ y x))))

(defthm nat+-zero
  (implies (nat? x)
           (equal (nat+ nil x)
                  x)))

(defthm nat+-right-cancellative
  (equal (equal (nat+ x k) (nat+ y k))
         (equal x y)))

(defthm nat+-left-cancellative
  (implies (and (nat? x)
                (nat? y)
                (nat? k))
           (equal (equal (nat+ k x) (nat+ k y))
                  (equal x y)))
  :hints (("Goal" :in-theory (disable nat+-commutative)
                  :use ((:instance nat+-commutative
                                   (x x)
                                   (y k))
                        (:instance nat+-commutative
                                   (x y)
                                   (y k))))))

(defthm associativity-of-nat+
  (equal (nat+ x (nat+ y z))
         (nat+ (nat+ x y) z)))