aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--L-99.lisp107
1 files changed, 107 insertions, 0 deletions
diff --git a/L-99.lisp b/L-99.lisp
index 4ed6841..ff9e1c6 100644
--- a/L-99.lisp
+++ b/L-99.lisp
@@ -462,3 +462,110 @@
(<= i (len x))
(not (member (element-at x i) (drop x i))))
(equal (count (element-at x i) x) 1)))
+
+;; P17 (*) Split a list into two parts; the length of the first part is given.
+(defun split-1 (x n acc)
+ (if (or (zp n) (endp x))
+ (list (rev acc) x)
+ (split-1 (cdr x)
+ (1- n)
+ (cons (car x) acc))))
+
+(defthm cadr-split-1-equal-nthcdr
+ (implies (and (natp n)
+ (< n (len x)))
+ (equal (cadr (split-1 x n acc))
+ (nthcdr n x))))
+
+(defthm car-split-1-equal-take
+ (implies (and (natp n)
+ (< n (len x))
+ (true-listp acc))
+ (equal (car (split-1 x n acc))
+ (revapp acc (take n x)))))
+
+(defmacro split (x n)
+ `(split-1 ,x ,n nil))
+
+(defthm car-split-equal-take
+ (implies (and (natp n)
+ (< n (len x)))
+ (equal (car (split x n))
+ (take n x))))
+
+(defthm cadr-split-equal-nthcdr
+ (implies (and (natp n)
+ (< n (len x)))
+ (equal (cadr (split x n))
+ (nthcdr n x))))
+
+(defthm split-1-car+cadr
+ (equal (split-1 x n acc)
+ (list (car (split-1 x n acc))
+ (cadr (split-1 x n acc)))))
+(in-theory (disable split-1-car+cadr))
+
+(defun split/easy (x n)
+ (list (take n x) (nthcdr n x)))
+
+(defthm split-1-equal-split-easy
+ (implies (and (true-listp x)
+ (natp n)
+ (< n (len x)))
+ (equal (split-1 x n nil)
+ (split/easy x n)))
+ :hints (("Goal" :do-not-induct t
+ :use ((:instance split-1-car+cadr
+ (x x)
+ (n n)
+ (acc nil))))))
+(in-theory (disable split-1))
+
+;; P18 (**) Extract a slice from a list.
+(defun slice (x i k)
+ (take (1+ (- k i)) (nthcdr (1- i) x)))
+
+;; P19 (**) Rotate a list N places to the left.
+(defun rotate (x n)
+ (let ((splited (split x (if (natp n)
+ n
+ (+ (len x) n)))))
+ (app (cadr splited) (car splited))))
+
+(defthm subsetp-take
+ (implies (and (true-listp x)
+ (natp n)
+ (< n (len x)))
+ (subsetp (take n x) x)))
+
+(defthm subsetp-reflexive-lemma
+ (implies (subsetp x (cdr y))
+ (subsetp x y)))
+
+(defthm subsetp-reflexive
+ (subsetp x x))
+
+(defthm subsetp-nthcdr
+ (implies (true-listp x)
+ (subsetp (nthcdr n x) x)))
+
+(defthm subsetp-rotate-left
+ (implies (and (true-listp x)
+ (natp n)
+ (< n (len x)))
+ (subsetp (rotate x n) x)))
+
+(defthm member-app
+ (iff (member e (app a b))
+ (or (member e a)
+ (member e b))))
+
+(defthm subsetp-app-commutative
+ (equal (subsetp x (app a b))
+ (subsetp x (app b a))))
+
+(defthm subsetp-rotate-right
+ (implies (and (true-listp x)
+ (natp n)
+ (< n (len x)))
+ (subsetp x (rotate x n))))